z-logo
open-access-imgOpen Access
Serum immunoglobulin free light chain levels in systemic autoimmune rheumatic diseases
Author(s) -
Gulli F.,
Napodano C.,
Marino M.,
Ciasca G.,
Pocino K.,
Basile V.,
Visentini M.,
Stefanile A.,
Todi L.,
De Spirito M.,
Rapaccini G. L.,
Basile U.
Publication year - 2020
Publication title -
clinical & experimental immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.329
H-Index - 135
eISSN - 1365-2249
pISSN - 0009-9104
DOI - 10.1111/cei.13385
Subject(s) - rheumatoid arthritis , medicine , immunology , antibody , pathogenesis , rheumatology , immunoglobulin light chain , pathological , systemic disease , systemic lupus , immunopathology , disease
Summary Several reports have highlighted the abnormal increments of serum immunoglobulin free light chains (FLCs) in the course of systemic autoimmune rheumatic diseases (SARD), but a comparative analysis among different conditions is still lacking. A strong association between elevated FLC and hepatitis C virus (HCV)‐related mixed cryoglobulinaemia (HCVMC) has been well established. Here, we aimed to analyse serum FLC levels in patients with four different SARD in comparison with HCVMC. Using a turbidimetric assay, free κ and λ chains were quantified in sera from 198 SARD patients (37 rheumatoid arthritis, RA; 47 systemic lupus erythematosus, SLE; 52 anti‐phospholipid syndrome, APS; 62 primary Sjogren's syndrome, pSS), 62 HCVMC and 50 healthy blood donors (HD). All patient groups showed increased κ levels when compared to HD: 33·5 ± 2·6 mg/l in HCVMC, 26·7 ± 2·3 mg/l in RA, 29·7 ± 1·9 mg/l in SLE, 23·8 ± 1·1 mg/l in APS, 24·2 ± 1·1 mg/l in pSS; 10·1 ± 0·6 mg/l in HD. Free λ levels displayed a significant increase only for HCVMC (20·4 ± 1·4 mg/l) and SLE (18·4 ± 1·0 mg/l) compared to HD (13·6 ± 0·9 mg/l). The increase of κ compared to λ takes into account a κ /λ ratio of 1·6 for all groups. Our results substantially analyse and strengthen the association between FLC and SARD focusing the questions regarding their role in the pathogenesis and diagnosis of human diseases. Unfortunately, the biochemical differences distinguishing normal from pathological FLC have not been identified. Production of different isotypes is probably connected to still‐unknown pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom