Use of bioengineered human commensal gut bacteria‐derived microvesicles for mucosal plague vaccine delivery and immunization
Author(s) -
Carvalho A. L.,
MiquelClopés A.,
Wegmann U.,
Jones E.,
Stentz R.,
Telatin A.,
Walker N. J.,
Butcher W. A.,
Brown P. J.,
Holmes S.,
Dennis M. J.,
Williamson E. D.,
Funnell S. G. P.,
Stock M.,
Carding S. R.
Publication year - 2019
Publication title -
clinical & experimental immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.329
H-Index - 135
eISSN - 1365-2249
pISSN - 0009-9104
DOI - 10.1111/cei.13301
Subject(s) - yersinia pestis , biology , microbiology and biotechnology , plague (disease) , immune system , antigen , immunization , virology , antibody , vaccination , immunology , medicine , virulence , biochemistry , pathology , gene
Summary Plague caused by the Gram‐negative bacterium, Yersinia pestis , is still endemic in parts of the world today. Protection against pneumonic plague is essential to prevent the development and spread of epidemics. Despite this, there are currently no licensed plague vaccines in the western world. Here we describe the means of delivering biologically active plague vaccine antigens directly to mucosal sites of plague infection using highly stable microvesicles (outer membrane vesicles; OMVs) that are naturally produced by the abundant and harmless human commensal gut bacterium Bacteroides thetaiotaomicron (Bt). Bt was engineered to express major plague protective antigens in its OMVs, specifically Fraction 1 (F1) in the outer membrane and LcrV (V antigen) in the lumen, for targeted delivery to the gastrointestinal (GI) and respiratory tracts in a non‐human primate (NHP) host. Our key findings were that Bt OMVs stably expresses F1 and V plague antigens, particularly the V antigen, in the correct, immunogenic form. When delivered intranasally V‐OMVs elicited substantive and specific immune and antibody responses, both in the serum [immunoglobulin (Ig)G] and in the upper and lower respiratory tract (IgA); this included the generation of serum antibodies able to kill plague bacteria. Our results also showed that Bt OMV‐based vaccines had many desirable characteristics, including: biosafety and an absence of any adverse effects, pathology or gross alteration of resident microbial communities (microbiotas); high stability and thermo‐tolerance; needle‐free delivery; intrinsic adjuvanticity; the ability to stimulate both humoral and cell‐mediated immune responses; and targeting of primary sites of plague infection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom