The T cell antigen receptor: the Swiss army knife of the immune system
Author(s) -
Attaf M.,
Legut M.,
Cole D. K.,
Sewell A. K.
Publication year - 2015
Publication title -
clinical & experimental immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.329
H-Index - 135
eISSN - 1365-2249
pISSN - 0009-9104
DOI - 10.1111/cei.12622
Subject(s) - t cell receptor , major histocompatibility complex , biology , antigen , t cell , microbiology and biotechnology , receptor , context (archaeology) , cd1 , antigen presenting cell , immune system , immunology , biochemistry , paleontology
Summary The mammalian T cell receptor (TCR) orchestrates immunity by responding to many billions of different ligands that it has never encountered before and cannot adapt to at the protein sequence level. This remarkable receptor exists in two main heterodimeric isoforms: αβ TCR and γδ TCR. The αβ TCR is expressed on the majority of peripheral T cells. Most αβ T cells recognize peptides, derived from degraded proteins, presented at the cell surface in molecular cradles called major histocompatibility complex (MHC) molecules. Recent reports have described other αβ T cell subsets. These ‘unconventional’ T cells bear TCRs that are capable of recognizing lipid ligands presented in the context of the MHC‐like CD1 protein family or bacterial metabolites bound to the MHC‐related protein 1 (MR1). γδ T cells constitute a minority of the T cell pool in human blood, but can represent up to half of total T cells in tissues such as the gut and skin. The identity of the preferred ligands for γδ T cells remains obscure, but it is now known that this receptor can also functionally engage CD1‐lipid, or immunoglobulin (Ig) superfamily proteins called butyrophilins in the presence of pyrophosphate intermediates of bacterial lipid biosynthesis. Interactions between TCRs and these ligands allow the host to discriminate between self and non‐self and co‐ordinate an attack on the latter. Here, we describe how cells of the T lymphocyte lineage and their antigen receptors are generated and discuss the various modes of antigen recognition by these extraordinarily versatile receptors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom