z-logo
Premium
A comparison of mesoporous silica nanoparticles and mesoporous organosilica nanoparticles as drug vehicles for cancer therapy
Author(s) -
Yue Juan,
Luo Shizhong,
Lu Mengmeng,
Shao Dan,
Wang Zheng,
Dong Wenfei
Publication year - 2018
Publication title -
chemical biology and drug design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 77
eISSN - 1747-0285
pISSN - 1747-0277
DOI - 10.1111/cbdd.13309
Subject(s) - mesoporous silica , biocompatibility , doxorubicin hydrochloride , endocytosis , cytotoxicity , doxorubicin , nanoparticle , glutathione , mesoporous organosilica , nanotechnology , cancer cell , drug carrier , chemistry , controlled release , drug , nanomedicine , pharmacology , materials science , mesoporous material , drug delivery , cancer , biochemistry , chemotherapy , in vitro , organic chemistry , medicine , cell , enzyme , catalysis , surgery
Mesoporous silica nanoparticles (MSNs) are promising drug carriers for use in cancer treatment owing to their excellent biocompatibility and drug‐loading capacity. However, MSN's incomplete drug release and toxic bioaccumulation phenomena limit their clinical application. Recently, researchers have presented redox responsive mesoporous organosilica nanoparticles containing disulfide (S–S) bridges (ss‐MONs). These nanoparticles retained their ability to undergo structural degradation and increased their local release activity when exposed to reducing agents. Disulfide‐based mesoporous organosilica nanoparticles offer researchers a better option for loading chemotherapeutic drugs due to their effective biodegradability through the reduction of glutathione. Although the potential of ss‐MONs in cancer theranostics has been studied, few researchers have systematically compared ss‐MONs with MSNs with regard to endocytosis, drug release, cytotoxicity, and therapeutic effect. In this work, ss‐MONs and MSNs with equal morphology and size were designed and used to payload doxorubicin hydrochloride (DOX) for liver cancer chemotherapy. The ss‐MONs showed considerable degradability in the presence of glutathione and performed comparably to MSNs on biocompatibility measures, including cytotoxicity and endocytosis, as well as in drug‐loading capacity. Notably, DOX‐loaded ss‐MONs exhibited higher intracellular drug release in cancer cells and better anticancer effects in comparison with DOX‐loaded MSNs. Hence, the ss‐MONs may be more desirable carriers for a highly efficient and safe treatment of cancer.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here