Premium
Mechanistics and photo‐energetics of macrocycles and photodynamic therapy: An overview of aspects to consider for research
Author(s) -
Horne Tamarisk K.,
Cronjé Marianne J.
Publication year - 2017
Publication title -
chemical biology and drug design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 77
eISSN - 1747-0285
pISSN - 1747-0277
DOI - 10.1111/cbdd.12761
Subject(s) - photodynamic therapy , photosensitizer , energetics , nanotechnology , computer science , biochemical engineering , combinatorial chemistry , chemistry , materials science , biology , photochemistry , engineering , organic chemistry , ecology
Research within the field of photodynamic therapy has escalated over the past 20 years. The required conjunctional use of photosensitizers, particularly of the macrocycle structure, has lead to a vast repertoire of derivatives that branch classes and subclasses thereof. Each exhibits a differential range of physiochemical properties that influence their potential applications within the larger phototherapy field for use in either diagnostics, photodynamic therapy, both or none. Herein, we provide an overview of these properties as they relate to photodynamic therapy and to a lesser extent diagnostics. By summarizing the mechanistics of photodynamic therapy coupled to the photo‐energetics displayed by macrocycle photosensitizers, we aimed to highlight the critical aspects any researcher should be aware of and consider when selecting and performing research for therapeutic application purposes. These include photosensitizer, photophysical and structural properties, synthesis design and subsequent attributes, main applications within research, common shortcomings exhibited and the current methods practiced to overcome them.