z-logo
open-access-imgOpen Access
Feasibility and clinical utility of comprehensive genomic profiling of hematological malignancies
Author(s) -
Fukuhara Suguru,
OshikawaKumade Yuji,
Kogure Yasunori,
Shingaki Sumito,
Kariyazono Hirokazu,
Kikukawa Yoshiya,
Koya Junji,
Saito Yuki,
Tabata Mariko,
Yoshifuji Kota,
Mizuno Kota,
MiyagiMaeshima Akiko,
Matsushita Hiromichi,
Sugiyama Masanaka,
Ogawa Chitose,
Inamoto Yoshihiro,
Fukuda Takahiro,
Sugano Masato,
Yamauchi Nobuhiko,
Minami Yosuke,
Hirata Makoto,
Yoshida Teruhiko,
Kohno Takashi,
Kohsaka Shinji,
Mano Hiroyuki,
Shiraishi Yuichi,
Ogawa Seishi,
Izutsu Koji,
Kataoka Keisuke
Publication year - 2022
Publication title -
cancer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.035
H-Index - 141
eISSN - 1349-7006
pISSN - 1347-9032
DOI - 10.1111/cas.15427
Subject(s) - germline , gene expression profiling , biology , somatic cell , computational biology , medicine , bioinformatics , oncology , gene , genetics , gene expression
Identification of genetic alterations through next‐generation sequencing (NGS) can guide treatment decision‐making by providing information on diagnosis, therapy selection, and prognostic stratification in patients with hematological malignancies. Although the utility of NGS‐based genomic profiling assays was investigated in hematological malignancies, no assays sufficiently cover driver mutations, including recently discovered ones, as well as fusions and/or pathogenic germline variants. To address these issues, here we have devised an integrated DNA/RNA profiling assay to detect various types of somatic alterations and germline variants at once. Particularly, our assay can successfully identify copy number alterations and structural variations, including immunoglobulin heavy chain translocations, IKZF1 intragenic deletions, and rare fusions. Using this assay, we conducted a prospective study to investigate the feasibility and clinical usefulness of comprehensive genomic profiling for 452 recurrently altered genes in hematological malignancies. In total, 176 patients (with 188 specimens) were analyzed, in which at least one alteration was detected in 171 (97%) patients, with a median number of total alterations of 7 (0–55). Among them, 145 (82%), 86 (49%), and 102 (58%) patients harbored at least one clinically relevant alteration for diagnosis, treatment, and prognosis, respectively. The proportion of patients with clinically relevant alterations was the highest in acute myeloid leukemia, whereas this assay was less informative in T/natural killer‐cell lymphoma. These results suggest the clinical utility of NGS‐based genomic profiling, particularly for their diagnosis and prognostic prediction, thereby highlighting the promise of precision medicine in hematological malignancies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here