Premium
Spatial heterogeneity and habitat configuration overcome habitat composition influences on alpha and beta mammal diversity
Author(s) -
Regolin André Luis,
Ribeiro Milton Cezar,
Martello Felipe,
Melo Geruza Leal,
Sponchiado Jonas,
Campanha Luis F. de Castro,
Sugai Larissa Sayuri Moreira,
Silva Thiago Sanna Freire,
Cáceres Nilton Carlos
Publication year - 2020
Publication title -
biotropica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.813
H-Index - 96
eISSN - 1744-7429
pISSN - 0006-3606
DOI - 10.1111/btp.12800
Subject(s) - species richness , spatial heterogeneity , ecology , beta diversity , habitat , alpha diversity , geography , nestedness , landscape ecology , habitat fragmentation , biology
Abstract The effects of habitat fragmentation on different taxa and ecosystems are subject to intense debate, and disentangling them is of utmost importance to support conservation and management strategies. We evaluated the importance of landscape composition and configuration, and spatial heterogeneity to explain α‐ and β‐diversity of mammals across a gradient of percent woody cover and land use diversity. We expected species richness to be positively related to all predictive variables, with the strongest relationship with landscape composition and configuration, and spatial heterogeneity respectively. We also expected landscape to influence β‐diversity in the same order of importance expected for species richness, with a stronger influence on nestedness due to deterministic loss of species more sensitive to habitat disturbance. We analyzed landscape structure using: (a) landscape metrics based on thematic maps and (b) image texture of a vegetation index. We compared a set of univariate explanatory models of species richness using AIC, and evaluated how dissimilarities in landscape composition and configuration and spatial heterogeneity affect β‐diversity components using a Multiple Regression on distance Matrix. Contrary with our expectations, landscape configuration was the main driver of species richness, followed by spatial heterogeneity and last by landscape composition. Nestedness was explained, in order of importance, by spatial heterogeneity, landscape configuration, and landscape composition. Although conservation policies tend to focus mainly on habitat amount, we advocate that landscape management must include strategies to preserve and improve habitat quality and complexity in natural patches and the surrounding matrix, enabling landscapes to harbor high species diversity. Abstract in Portuguese is available with online material.