Premium
Habitat amount drives the functional diversity and nestedness of anuran communities in an Atlantic Forest fragmented landscape
Author(s) -
AlmeidaGomes Mauricio,
Vieira Marcus V.,
Rocha Carlos F. D.,
Melo Adriano S.
Publication year - 2019
Publication title -
biotropica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.813
H-Index - 96
eISSN - 1744-7429
pISSN - 0006-3606
DOI - 10.1111/btp.12687
Subject(s) - nestedness , ecology , generalist and specialist species , habitat , biology , metacommunity , biodiversity , ecosystem , functional diversity , biological dispersal , population , demography , sociology
Natural environments disturbed by human activities can suffer from species extinctions, but some can still harbor high taxonomic diversity. However, disturbances may have impacts beyond the species level, if the species lost represent unique functions in the ecosystem. In this study, we evaluated to what extent the amount of habitat can determine the functional diversity and nestedness of amphibian communities in an Atlantic Forest fragmented landscape in Brazil, and if there is a threshold of habitat amount beyond which there is severe loss of functional diversity. As species responses may depend on their habitat type, we performed the analyses for three different sets of species: all species, forest‐dependent species, and generalist species. We also evaluated the relative importance of turnover and nestedness components to total functional dissimilarity among sites. Habitat amount affected functional diversity of frogs, especially for forest‐dependent species where a linear reduction was detected. The functional dissimilarity among sites was mostly explained by the nestedness component. The reduction of functional diversity was mediated by an ordered loss of traits, leading to a functionally nested metacommunity. These sensitive traits were closely related to habits and reproductive modes that depend on rivers and streams. The maintenance of functional diversity of frogs in fragmented landscapes must rely on the conservation of both terrestrial and aquatic environments, as some species and their traits can disappear from remnants of native vegetation lacking some specific habitats (e.g. streams). Abstract in Portuguese is available with online material.