z-logo
Premium
Revisiting the links between bone remodelling and osteocytes: insights from across phyla
Author(s) -
Currey John D.,
Dean Mason N.,
Shahar Ron
Publication year - 2017
Publication title -
biological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 4.993
H-Index - 165
eISSN - 1469-185X
pISSN - 1464-7931
DOI - 10.1111/brv.12302
Subject(s) - bone remodeling , biology , osteocyte , tying , bone cell , evolutionary biology , process (computing) , bone remodeling period , anatomy , neuroscience , microbiology and biotechnology , genetics , osteoblast , computer science , in vitro , operating system
ABSTRACT We question two major tenets of bone biology: that the primary role of remodelling is to remove damage in the bone (so‐called damage‐driven remodelling) and that osteocytes are the only strain‐sensing orchestrators of this process. These concepts are distilled largely from research on model mammal species, but in fact, there are a number of features of various bones, from mammalian and non‐mammalian species, that do not accord with these ‘rules’. Here, we assemble a variety of examples, ranging from species that lack osteocytes but that still seem capable of remodelling their bones, to species with osteocytic bones that do not remodel, and to instances of inter‐species, inter‐bone and/or intra‐bone variation in bone remodelling that show that this purported repair process is not always where the ‘rules’ tell us it should be. This collection of points argues that our understanding of the advantages, roles and primary drivers of remodelling are inadequate and biased to quite a small phylogenetic cross section of the species that possess bone. We suggest a variety of new directions for bone research that would provide us with a better understanding of bone remodelling, tying together the interests of comparative biologists, palaeontologists and medical researchers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here