Premium
Basin filling evolution of the central basins of Mallorca since the Pliocene
Author(s) -
Capó Antonio,
Garcia Celso
Publication year - 2019
Publication title -
basin research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.522
H-Index - 83
eISSN - 1365-2117
pISSN - 0950-091X
DOI - 10.1111/bre.12352
Subject(s) - geology , structural basin , quaternary , clastic rock , sedimentation , sediment , sedimentary rock , neogene , isopach map , carbonate , paleontology , geomorphology , tectonics , geochemistry , facies , materials science , metallurgy
A new compilation of data from 436 drill cores using decompaction and backstripping techniques was used to reconstruct the basin filling history from the Pliocene until the present day in the Palma, Inca and Sa Pobla Basins on the island of Mallorca (Spain). Calcareous rocks dominate the source area and provide a limited amount of clastic input to the basins that has resulted in an average accumulation rate of between 5 and 20 m/Ma during the last 5.3 Ma. Carbonate sediment production dominated the basin filling history during early‐mid Pliocene, but during the Quaternary, the sedimentation processes in the Palma Basin were probably enhanced by an evolution in the drainage network that increased the sediment supply and the accumulated thickness caused by stream capture. However, the maximum sedimentation rate filling the depocentres of the three basins has been decreasing since the Pliocene, showing that not only the catchment transport efficiency but also the relative sea level have been controlling the sediment accumulation in these carbonate basins. The isopach cross‐sections support the idea that a palaeorelief was generated during the Messinian sea level drop and that heterogeneities were filled in from the Pliocene to the Quaternary. We conclude that the central basins of Mallorca were filled heterogeneously due to tectonic and geomorphic processes that controlled sediment transport and production, resulting in different average sedimentation thicknesses that decreased since the Pliocene as the accommodation space became filled and the relative sea level dropped.