z-logo
Premium
The architecture of submarine monogenetic volcanoes – insights from 3D seismic data
Author(s) -
Reynolds Peter,
Schofield Nick,
Brown Richard J.,
Holford Simon Paul
Publication year - 2018
Publication title -
basin research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.522
H-Index - 83
eISSN - 1365-2117
pISSN - 0950-091X
DOI - 10.1111/bre.12230
Subject(s) - geology , volcano , lava , pyroclastic rock , volcanism , hydrothermal vent , submarine volcano , impact crater , seismology , strombolian eruption , magma , volcanic cone , lava field , cinder cone , sedimentary rock , petrology , paleontology , tectonics , hydrothermal circulation , astrobiology , physics
Many prospective sedimentary basins contain a variety of extrusive volcanic products that are ultimately sourced from volcanoes. However, seismic reflection‐based studies of magmatic rift basins have tended to focus on the underlying magma plumbing system, meaning that the seismic characteristics of volcanoes are not well understood. Additionally, volcanoes have similar morphologies to hydrothermal vents, which are also linked to underlying magmatic intrusions. In this study, we use high resolution 3D seismic and well data from the Bass Basin, offshore southern Australia, to document 34 cone‐ and crater‐type vents of Miocene age. The vents overlie magmatic intrusions and have seismic properties indicative of a volcanic origin: their moderate–high amplitude upper reflections and zones of “wash‐out” and velocity pull‐up beneath. The internal reflections of the vents are similar to those found in lava deltas, suggesting they are composed of volcaniclastic material. This interpretation is corroborated by data from exploration wells which penetrated the flanks of several vents. We infer that the vents we describe are composed of hyaloclastite and pyroclasts produced during submarine volcanic eruptions. The morphology of the vents is typical of monogenetic volcanoes, consistent with the onshore record of volcanism on the southern Australian margin. Based on temporal, spatial and volumetric relationships, we propose that submarine volcanoes can evolve from maars to tuff cones as a result of varying magma‐water interaction efficiency. The morphologies of the volcanoes and their links to the underlying feeder systems are superficially similar to hydrothermal vents. This highlights the need for careful seismic interpretation and characterization of vent structures linked to magmatic intrusions within sedimentary basins.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here