z-logo
Premium
β‐Adrenoceptor activation affects galectin‐3 as a biomarker and therapeutic target in heart disease
Author(s) -
Du XiaoJun,
Zhao WeiBo,
Nguyen MyNhan,
Lu Qun,
Kiriazis Helen
Publication year - 2019
Publication title -
british journal of pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.432
H-Index - 211
eISSN - 1476-5381
pISSN - 0007-1188
DOI - 10.1111/bph.14620
Subject(s) - cardiotoxicity , cardiac fibrosis , mediator , biomarker , galectin 3 , heart failure , disease , medicine , isoprenaline , fibrosis , heart disease , signal transduction , cancer research , biology , stimulation , microbiology and biotechnology , toxicity , biochemistry
Myocardial fibrosis is a key histopathological component that drives the progression of heart disease leading to heart failure and constitutes a therapeutic target. Recent preclinical and clinical studies have implicated galectin-3 (Gal-3) as a pro-fibrotic molecule and a biomarker of heart disease and fibrosis. However, our knowledge is poor on the mechanism(s) that determine the blood level or regulate cardiac expression of Gal-3. Recent studies have demonstrated that enhanced β-adrenoceptor activity is a determinant of both circulating concentration and cardiac expression of Gal-3. Pharmacological or transgenic activation of β-adrenoceptors leads to increased blood levels of Gal-3 and up-regulated cardiac Gal-3 expression, effect that can be reversed with the use of β-adrenoceptor antagonists. Conversely, Gal-3 gene deletion confers protection against isoprenaline-induced cardiotoxicity and fibrogenesis. At the transcription level, β-adrenoceptor stimulation activates cardiac mammalian sterile-20-like kinase 1, a pivotal kinase of the Hippo signalling pathway, which is associated with Gal-3 up-regulation. Recent studies have suggested a role for the β-adrenoceptor-Hippo signalling pathway in the regulation of cardiac Gal-3 expression thereby contributing to the onset and progression of heart disease. This implies a therapeutic potential of the suppression of Gal-3 expression. In this review, we discuss the effects of β-adrenoceptor activity on Gal-3 as a biomarker and causative mediator in the setting of heart disease and point out pivotal knowledge gaps. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here