z-logo
Premium
Branched‐chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view
Author(s) -
Bifari Francesco,
Nisoli Enzo
Publication year - 2017
Publication title -
british journal of pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.432
H-Index - 211
eISSN - 1476-5381
pISSN - 0007-1188
DOI - 10.1111/bph.13624
Subject(s) - anabolism , catabolism , nutraceutical , amino acid , endocrinology , medicine , branched chain amino acid , biology , metabolism , pharmacology , biochemistry , leucine
Substantial evidence has been accumulated suggesting that branched-chain amino acid (BCAA) supplementation or BCAA-rich diets have a positive effect on the regulation of body weight, muscle protein synthesis, glucose homeostasis, the ageing process and extend healthspan. Despite these beneficial effects, epidemiological studies have shown that BCAA plasma concentrations and BCAA metabolism are altered in several metabolic disorders, including type 2 diabetes mellitus and cardiovascular diseases. In this review article, we present an overview of the current literature on the different effects of BCAAs in health and disease. We also highlight the results showing the most promising therapeutic effects of dietary BCAA supplementation and discuss how BCAAs can trigger different and even opposite effects, depending on the catabolic and anabolic states of the organisms. Moreover, we consider the effects of BCAAs when metabolism is abnormal, in the presence of a mixture of different anabolic and catabolic signals. These unique pharmacodynamic properties may partially explain some of the markedly different effects found in BCAA supplementation studies. To predict accurately these effects, the overall catabolic/anabolic status of patients should be carefully considered. In wider terms, a correct modulation of metabolic disorders would make nutraceutical interventions with BCAAs more effective.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here