z-logo
Premium
Identifying ligands at orphan GPCRs: current status using structure‐based approaches
Author(s) -
Ngo Tony,
Kufareva Irina,
Coleman James LJ,
Graham Robert M,
Abagyan Ruben,
Smith Nicola J
Publication year - 2016
Publication title -
british journal of pharmacology
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 2.432
H-Index - 211
eISSN - 1476-5381
pISSN - 0007-1188
DOI - 10.1111/bph.13452
Subject(s) - g protein coupled receptor , computational biology , drug discovery , biology , bioinformatics , pharmacology , computer science , receptor , genetics
GPCRs are the most successful pharmaceutical targets in history. Nevertheless, the pharmacology of many GPCRs remains inaccessible as their endogenous or exogenous modulators have not been discovered. Tools that explore the physiological functions and pharmacological potential of these 'orphan' GPCRs, whether they are endogenous and/or surrogate ligands, are therefore of paramount importance. Rates of receptor deorphanization determined by traditional reverse pharmacology methods have slowed, indicating a need for the development of more sophisticated and efficient ligand screening approaches. Here, we discuss the use of structure-based ligand discovery approaches to identify small molecule modulators for exploring the function of orphan GPCRs. These studies have been buoyed by the growing number of GPCR crystal structures solved in the past decade, providing a broad range of template structures for homology modelling of orphans. This review discusses the methods used to establish the appropriate signalling assays to test orphan receptor activity and provides current examples of structure-based methods used to identify ligands of orphan GPCRs. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here