z-logo
Premium
Human induced pluripotent stem cell‐derived versus adult cardiomyocytes: an in silico electrophysiological study on effects of ionic current block
Author(s) -
Paci M,
Hyttinen J,
Rodriguez B,
Severi S
Publication year - 2015
Publication title -
british journal of pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.432
H-Index - 211
eISSN - 1476-5381
pISSN - 0007-1188
DOI - 10.1111/bph.13282
Subject(s) - in silico , repolarization , induced pluripotent stem cell , herg , proarrhythmia , electrophysiology , depolarization , cardiac electrophysiology , cardiac action potential , pharmacology , chemistry , biophysics , biology , neuroscience , potassium channel , drug , biochemistry , embryonic stem cell , gene
Background and Purpose Two new technologies are likely to revolutionize cardiac safety and drug development: in vitro experiments on human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) and in silico human adult ventricular cardiomyocyte (hAdultV‐CM) models. Their combination was recently proposed as a potential replacement for the present hERG‐based QT study for pharmacological safety assessments. Here, we systematically compared in silico the effects of selective ionic current block on hiPSC‐CM and hAdultV‐CM action potentials (APs), to identify similarities/differences and to illustrate the potential of computational models as supportive tools for evaluating new in vitro technologies. Experimental Approach In silico AP models of ventricular‐like and atrial‐like hiPSC‐CMs and hAdultV‐CM were used to simulate the main effects of four degrees of block of the main cardiac transmembrane currents. Key Results Qualitatively, hiPSC‐CM and hAdultV‐CM APs showed similar responses to current block, consistent with results from experiments. However, quantitatively, hiPSC‐CMs were more sensitive to block of (i) L‐type Ca 2+ currents due to the overexpression of the Na + /Ca 2+ exchanger (leading to shorter APs) and (ii) the inward rectifier K + current due to reduced repolarization reserve (inducing diastolic potential depolarization and repolarization failure). Conclusions and Implications In silico hiPSC‐CMs and hAdultV‐CMs exhibit a similar response to selective current blocks. However, overall hiPSC‐CMs show greater sensitivity to block, which may facilitate in vitro identification of drug‐induced effects. Extrapolation of drug effects from hiPSC‐CM to hAdultV‐CM and pro‐arrhythmic risk assessment can be facilitated by in silico predictions using biophysically‐based computational models.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here