z-logo
open-access-imgOpen Access
Collateral blood flow in different cerebrovascular hierarchy provides endogenous protection in cerebral ischemia
Author(s) -
Luo Chuanming,
Liang Fengyin,
Ren Huixia,
Yao Xiaoli,
Liu Qiang,
Li Mingyue,
Qin Dajiang,
Yuan TiFei,
Pei Zhong,
Su Huanxing
Publication year - 2017
Publication title -
brain pathology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.986
H-Index - 132
eISSN - 1750-3639
pISSN - 1015-6305
DOI - 10.1111/bpa.12458
Subject(s) - penumbra , medicine , arteriole , blood flow , collateral circulation , microcirculation , ischemia , cerebral blood flow , cardiology
Collateral blood flow as vascular adaptions to focal cerebral ischemia is well recognized. However, few studies directly investigate the dynamics of collateral vessel recruitment in vivo and little is known about the effect of collateral blood flow in different cerebrovascular hierarchy on the neuropathology after focal ischemic stroke. Here, we report that collateral blood flow is critically involved in blood vessel compensations following regional ischemia. We occluded a pial arteriole using femtosecond laser ablating under the intact thinned skull and documented the changes of collateral flow around the surface communication network and between the surface communication network and subsurface microcirculation network using in vivo two photon microscopy imaging. Occlusion of the pial arteriole apparently increased the diameter and collateral blood flow of its leptomeningeal anastomoses, which significantly reduced the cortical infarction size. This result suggests that the collateral flow via surface communicating network connected with leptomeningeal anastomoses could greatly impact on the extent of infarction. We then further occluded the target pial arteriole and all of its leptomeningeal anastomoses. Notably, this type of occlusion led to reversals of blood flow in the penetrating arterioles mainly proximal to the occluded pial arteriole in a direction from the subsurface microcirculation network to surface arterioles. Interesting, the cell death in the area of ischemic penumbra was accelerated when we performed occlusion to cease the reversed blood flow in those penetrating arterioles, suggesting that the collateral blood flow from subsurface microcirculation network exerts protective roles in delaying cell death in the ischemic penumbra. In conclusion, we provide the first experimental evidence that collateral blood vessels at different cerebrovascular hierarchy are endogenously compensatory mechanisms in brain ischemia.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here