Premium
Tensins are versatile regulators of Rho GTPase signalling and cell adhesion
Author(s) -
Blangy Anne
Publication year - 2017
Publication title -
biology of the cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.543
H-Index - 85
eISSN - 1768-322X
pISSN - 0248-4900
DOI - 10.1111/boc.201600053
Subject(s) - microbiology and biotechnology , biology , gtpase , cell adhesion , guanine nucleotide exchange factor , rhoa , focal adhesion , integrin , proto oncogene tyrosine protein kinase src , extracellular matrix , podosome , tyrosine phosphorylation , cell adhesion molecule , gtpase activating protein , signal transduction , cytoskeleton , biochemistry , cell , g protein
Tensins are focal adhesion molecules that were identified and characterised in the late 1980s to early 1990s. They play an essential role in the control of cell adhesion. Tensins can bind the tail of ß integrin via their phospho tyrosine binding domain, they exhibit various protein interaction domains including a Src Homology 2 domain and they are serine‐, threonine‐ and tyrosine‐phosphorylated in response to various stimuli. Tensins serve as scaffolds to gather signalling molecules at the extracellular matrix adhesion complexes. Tensins have emerged as important regulators of cell adhesion and migration, in particular by participating in Rho GTPase signalling pathways. Tensins were shown to influence the activity of the GTPase RhoA, by regulating the Rho GTPase activating protein Deleted in Liver Cancer 1. More recently, Tensin 3 was also found to regulate Dock5, a guanine nucleotide exchange factor for the GTPase Rac, and to modulate podosome‐based adhesion structures in osteoclasts. This review focusses on the recent literature highlighting how Tensins can interplay with regulators of Rho GTPase signalling pathways and how this influences cell adhesion and migration.