Premium
On the asymptotic standard error of a class of robust estimators of ability in dichotomous item response models
Author(s) -
Magis David
Publication year - 2014
Publication title -
british journal of mathematical and statistical psychology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.157
H-Index - 51
eISSN - 2044-8317
pISSN - 0007-1102
DOI - 10.1111/bmsp.12027
Subject(s) - estimator , mathematics , residual , asymptotic analysis , statistics , computation , item response theory , standard error , measure (data warehouse) , robust statistics , m estimator , computer science , algorithm , psychometrics , database
In item response theory, the classical estimators of ability are highly sensitive to response disturbances and can return strongly biased estimates of the true underlying ability level. Robust methods were introduced to lessen the impact of such aberrant responses on the estimation process. The computation of asymptotic (i.e., large‐sample) standard errors ( ASE ) for these robust estimators, however, has not yet been fully considered. This paper focuses on a broad class of robust ability estimators, defined by an appropriate selection of the weight function and the residual measure, for which the ASE is derived from the theory of estimating equations. The maximum likelihood ( ML ) and the robust estimators, together with their estimated ASE s, are then compared in a simulation study by generating random guessing disturbances. It is concluded that both the estimators and their ASE perform similarly in the absence of random guessing, while the robust estimator and its estimated ASE are less biased and outperform their ML counterparts in the presence of random guessing with large impact on the item response process.