z-logo
Premium
Penalized Fieller's confidence interval for the ratio of bivariate normal means
Author(s) -
Wang Peng,
Xu Siqi,
Wang YiXin,
Wu Baolin,
Fung Wing Kam,
Gao Guimin,
Liang Zhijiang,
Liu Nianjun
Publication year - 2021
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/biom.13363
Subject(s) - bivariate analysis , coverage probability , mathematics , bounded function , confidence interval , confidence distribution , statistics , normality , interval (graph theory) , combinatorics , mathematical analysis
Constructing a confidence interval for the ratio of bivariate normal means is a classical problem in statistics. Several methods have been proposed in the literature. The Fieller method is known as an exact method, but can produce an unbounded confidence interval if the denominator of the ratio is not significantly deviated from 0; while the delta and some numeric methods are all bounded, they are only first‐order correct. Motivated by a real‐world problem, we propose the penalized Fieller method, which employs the same principle as the Fieller method, but adopts a penalized likelihood approach to estimate the denominator. The proposed method has a simple closed form, and can always produce a bounded confidence interval by selecting a suitable penalty parameter. Moreover, the new method is shown to be second‐order correct under the bivariate normality assumption, that is, its coverage probability will converge to the nominal level faster than other bounded methods. Simulation results show that our proposed method generally outperforms the existing methods in terms of controlling the coverage probability and the confidence width and is particularly useful when the denominator does not have adequate power to reject being 0. Finally, we apply the proposed approach to the interval estimation of the median response dose in pharmacology studies to show its practical usefulness.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here