z-logo
Premium
Dynamic inference in general nested case‐control designs
Author(s) -
Feifel J.,
Dobler D.
Publication year - 2021
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/biom.13259
Subject(s) - resampling , inference , covariate , computer science , statistics , event (particle physics) , martingale (probability theory) , confidence interval , mathematics , econometrics , artificial intelligence , physics , quantum mechanics
Nested case‐control designs are attractive in studies with a time‐to‐event endpoint if the outcome is rare or if interest lies in evaluating expensive covariates. The appeal is that these designs restrict to small subsets of all patients at risk just prior to the observed event times. Only these small subsets need to be evaluated. Typically, the controls are selected at random and methods for time‐simultaneous inference have been proposed in the literature. However, the martingale structure behind nested case‐control designs allows for more powerful and flexible non‐standard sampling designs. We exploit that structure to find simultaneous confidence bands based on wild bootstrap resampling procedures within this general class of designs. We show in a simulation study that the intended coverage probability is obtained for confidence bands for cumulative baseline hazard functions. We apply our methods to observational data about hospital‐acquired infections.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here