z-logo
Premium
Global rank tests for multiple, possibly censored, outcomes
Author(s) -
Ramchandani Ritesh,
Schoenfeld David A.,
Finkelstein Dianne M.
Publication year - 2016
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/biom.12475
Subject(s) - pairwise comparison , weighting , nonparametric statistics , generalization , computer science , parametric statistics , rank (graph theory) , test (biology) , score , a weighting , machine learning , statistics , medicine , artificial intelligence , mathematics , mathematical analysis , paleontology , combinatorics , biology , radiology
Summary Clinical trials often collect multiple outcomes on each patient, as the treatment may be expected to affect the patient on many dimensions. For example, a treatment for a neurological disease such as ALS is intended to impact several dimensions of neurological function as well as survival. The assessment of treatment on the basis of multiple outcomes is challenging, both in terms of selecting a test and interpreting the results. Several global tests have been proposed, and we provide a general approach to selecting and executing a global test. The tests require minimal parametric assumptions, are flexible about weighting of the various outcomes, and are appropriate even when some or all of the outcomes are censored. The test we propose is based on a simple scoring mechanism applied to each pair of subjects for each endpoint. The pairwise scores are then reduced to a summary score, and a rank‐sum test is applied to the summary scores. This can be seen as a generalization of previously proposed nonparametric global tests (e.g., O'Brien, 1984). We discuss the choice of optimal weighting schemes based on power and relative importance of the outcomes. As the optimal weights are generally unknown in practice, we also propose an adaptive weighting scheme and evaluate its performance in simulations. We apply the methods to analyze the impact of a treatment on neurological function and death in an ALS trial.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here