z-logo
Premium
New methods for treatment effect calibration, with applications to non‐inferiority trials
Author(s) -
Zhang Zhiwei,
Nie Lei,
Soon Guoxing,
Hu Zonghui
Publication year - 2016
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/biom.12388
Subject(s) - weighting , population , calibration , clinical trial , outcome (game theory) , statistics , regression , econometrics , placebo , computer science , mathematics , medicine , alternative medicine , environmental health , mathematical economics , pathology , radiology
Summary In comparative effectiveness research, it is often of interest to calibrate treatment effect estimates from a clinical trial to a target population that differs from the study population. One important application is an indirect comparison of a new treatment with a placebo control on the basis of two separate randomized clinical trials: a non‐inferiority trial comparing the new treatment with an active control and a historical trial comparing the active control with placebo. The available methods for treatment effect calibration include an outcome regression (OR) method based on a regression model for the outcome and a weighting method based on a propensity score (PS) model. This article proposes new methods for treatment effect calibration: one based on a conditional effect (CE) model and two doubly robust (DR) methods. The first DR method involves a PS model and an OR model, is asymptotically valid if either model is correct, and attains the semiparametric information bound if both models are correct. The second DR method involves a PS model, a CE model, and possibly an OR model, is asymptotically valid under the union of the PS and CE models, and attains the semiparametric information bound if all three models are correct. The various methods are compared in a simulation study and applied to recent clinical trials for treating human immunodeficiency virus infection.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here