Premium
Linear mixed function‐on‐function regression models
Author(s) -
Wang Wei
Publication year - 2014
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/biom.12207
Subject(s) - variance function , mathematics , linear regression , statistics , proper linear model , mixed model , covariance , linear model , regression , regression analysis , function (biology) , polynomial regression , biology , evolutionary biology
Summary We develop a linear mixed regression model where both the response and the predictor are functions. Model parameters are estimated by maximizing the log likelihood via the ECME algorithm. The estimated variance parameters or covariance matrices are shown to be positive or positive definite at each iteration. In simulation studies, the approach outperforms in terms of the fitting error and the MSE of estimating the “regression coefficients.”