z-logo
Premium
Increased temporo‐insular engagement in unmedicated bipolar II disorder: an exploratory resting state study using independent component analysis
Author(s) -
Yip Sarah W,
Mackay Clare E,
Goodwin Guy M
Publication year - 2014
Publication title -
bipolar disorders
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.285
H-Index - 129
eISSN - 1399-5618
pISSN - 1398-5647
DOI - 10.1111/bdi.12206
Subject(s) - bipolar disorder , psychology , resting state fmri , default mode network , functional magnetic resonance imaging , mood , putamen , insula , neuroscience , audiology , psychiatry , medicine
Objectives Despite numerous structural and functional magnetic resonance imaging studies, the neurobiology of bipolar disorder ( BD ) is still incompletely understood. Resting‐state functional magnetic resonance imaging (rs FMRI ) allows for the study of intrinsic functional connections between brain areas, which may reflect the pathophysiology of BD . Most previous rs FMRI studies conducted in BD have included a majority of medicated patients, making simple interpretation with respect to pathophysiology difficult. Methods Participants were 15 antipsychotic agent‐ and mood‐stabilizer‐naïve young adults with bipolar II disorder ( BD ‐II), and 20 healthy controls group‐matched for gender, age, and cognitive ability. Independent component analysis ( ICA ) was used to identify eight commonly studied resting‐state networks ( RSN s). Between‐group comparisons were conducted using dual regression and corrected for family‐wise error ( FWE ) across space and the number of components (p FWE  < 0.05). Results In comparison to controls, participants with BD ‐II had increased coherence across several brain regions, including the bilateral insula and putamen, across a temporo‐insular network. No between‐group differences in engagement of the default mode network were found. Conclusions This was the first ICA ‐based rs FMRI study conducted among unmedicated individuals with BD . Given the young age (mean = 23 years) and antipsychotic agent‐ and mood‐stabilizer‐naïve status of our participants with BD ‐II, temporo‐insular functional connectivity is a candidate vulnerability marker for BD . Further work is needed to relate resting‐state differences to detailed understanding of pathophysiology.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here