Premium
Polygalasaponin F inhibits neuronal apoptosis induced by oxygen‐glucose deprivation and reoxygenation through the PI3K/Akt pathway
Author(s) -
Xie Wei,
Wulin Hade,
Shao Guo,
Wei Liqin,
Qi Ruifang,
Ma Baohui,
Chen Naihong,
Shi Ruili
Publication year - 2020
Publication title -
basic and clinical pharmacology and toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.805
H-Index - 90
eISSN - 1742-7843
pISSN - 1742-7835
DOI - 10.1111/bcpt.13408
Subject(s) - protein kinase b , pi3k/akt/mtor pathway , apoptosis , viability assay , chemistry , pharmacology , reactive oxygen species , microbiology and biotechnology , biology , biochemistry
Abstract Cerebral ischaemia is a common cerebrovascular disease and often induces neuronal apoptosis, leading to brain damage. Polygalasaponin F (PGSF) is one of the components in Polygala japonica Houtt, and it is a triterpenoid saponin monomer. This research focused on anti‐apoptotic effect of PGSF during oxygen‐glucose deprivation and reoxygenation (OGD/R) injury in rat adrenal pheochromocytoma cells (PC12) and primary rat cortical neurons. OGD/R treatment reduced viability of PC12 cells and primary neurons. This reduced viability was prevented by PGSF, as shown by MTT assay. OGD/R insult decreased expression of Bcl‐2/Bax both in PC12 cells and primary neurons but elevated levels of caspase‐3 in primary neurons. However, PGSF may up‐regulate expression of Bcl‐2/Bax and down‐regulate caspase‐3 in these particular cells. Furthermore, Bcl‐2/Bax and the ratio between phosphorylated Akt and total Akt were decreased in PC12 cells treated with OGD/R, and both were increased by PGSF. Moreover, increase in the ratios of Bcl‐2/Bax and phosphorylated Akt/total Akt in PC12 cells was suppressed by phosphatidylinositol 3‐kinase (PI3K ) inhibitor. Data suggest PGSF might prevent OGD/R‐induced injury via activation of PI3K/Akt signalling. The ability of PGSF to block the effects of OGD/R appears to involve regulation of Bcl‐2, Bax and caspase‐3, which are related to apoptosis.