z-logo
Premium
Epigallocatechin‐3‐Gallate Attenuates Oxidative Stress and Inflammation in Obstructive Nephropathy via NF ‐κB and Nrf2/ HO ‐1 Signalling Pathway Regulation
Author(s) -
Wang Yanqiu,
Wang Bowen,
Du Feng,
Su Xuesong,
Sun Guangping,
Zhou Guangyu,
Bian Xiaohui,
Liu Na
Publication year - 2015
Publication title -
basic and clinical pharmacology and toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.805
H-Index - 90
eISSN - 1742-7843
pISSN - 1742-7835
DOI - 10.1111/bcpt.12383
Subject(s) - oxidative stress , kidney , pharmacology , keap1 , blood urea nitrogen , inflammation , chemistry , creatinine , renal function , epigallocatechin gallate , medicine , kidney disease , catechin , endocrinology , biochemistry , antioxidant , polyphenol , transcription factor , gene
Oxidative stress and inflammation contribute importantly to the pathogenesis of chronic kidney disease ( CKD ). Epigallocatechin‐3‐gallate ( EGCG ), which is the most abundant and most active catechin polyphenol extracted from green tea, has been proved to have many bioactivities. In this study, the renoprotective effect of EGCG was evaluated in a widely used kidney disease model, the unilateral ureteral obstruction ( UUO ) mice model. After 14 days of EGCG administration, mean arterial blood pressure, body‐weight and obstructed kidney weight were measured. Levels of blood urea nitrogen ( BUN ) and creatinine ( CR ) and activities of glutamic–pyruvic transaminase ( GPT ) and lactate dehydrogenase ( LDH ) in serum were estimated as indicators of renal function. Periodic acid–Schiff ( PAS ) staining was performed to observe the pathological changes of the obstructed kidney. Antioxidant enzymes and pro‐inflammatory cytokine production were estimated to reflect the oxidative stress and inflammatory state in the obstructed kidney. Finally, the main proteins in the NF ‐κB and Nrf2 signalling pathway and DNA binding activity of NF ‐κB and Nrf2 were measured to investigate the effect of EGCG on these two pathways. The results demonstrated that EGCG could restore UUO ‐induced kidney weight loss and renal dysfunction. In addition, UUO ‐induced oxidative stress and inflammatory responses in the obstructed kidney were also prevented by EGCG . Furthermore, EGCG could induce both NF ‐κB and Nrf2 nuclear translocation in the UUO kidney and promote heme oxygenase‐1 ( HO ‐1) production. These results indicated that the renoprotective effect of EGCG might be through its NF ‐κB and Nrf2 signalling pathway regulations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here