Premium
Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance
Author(s) -
Pillai Viju V.,
Kei Tiffany G.,
Reddy Shan E.,
Das Moubani,
Abratte Christian,
Cheong Soon H.,
Selvaraj Vimal
Publication year - 2019
Publication title -
animal science journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.606
H-Index - 38
eISSN - 1740-0929
pISSN - 1344-3941
DOI - 10.1111/asj.13272
Subject(s) - reprogramming , induced pluripotent stem cell , sox2 , klf4 , somatic cell , homeobox protein nanog , biology , microbiology and biotechnology , stem cell , embryonic stem cell , cell , genetics , gene
Mechanisms that direct reprogramming of differentiated somatic cells to induced pluripotent stem cells (iPSCs), albeit incomplete in understanding, are highly conserved across all mammalian species studied. Equally, proof of principle that iPSCs can be derived from domestic cattle has been reported in several publications. In our efforts to derive and study bovine iPSCs, we encountered inadequacy of methods to generate, sustain, and characterize these cells. Our results suggest that iPSC protocols optimized for mouse and human somatic cells do not effectively translate to bovine somatic cells, which show some refractoriness to reprogramming that also affects sustenance. Moreover, methods that enhance reprogramming efficiency in mouse and human cells had no effect on improving bovine cell reprogramming. Although use of retroviral vectors coding for bovine OCT4 , SOX2 , KLF4 , cMYC, and NANOG appeared to produce consistent iPSC‐like cells from both fibroblasts and cells from the Wharton's jelly, these colonies could not be sustained. Use of bovine genes could successfully reprogram both mouse and human cells. These findings indicated either incomplete reprogramming and/or discordant/inadequate culture conditions for bovine pluripotent stem cells. Therefore, additional studies that advance core knowledge of bovine pluripotency are necessary before any anticipated iPSC‐driven bovine technologies can be realized.