Premium
Effects of dietary leucine on antioxidant activity and expression of antioxidant and mitochondrial‐related genes in longissimus dorsi muscle and liver of piglets
Author(s) -
Chen Xiaoling,
Xiang Lu,
Jia Gang,
Liu Guangmang,
Zhao Hua,
Huang Zhiqing
Publication year - 2019
Publication title -
animal science journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.606
H-Index - 38
eISSN - 1740-0929
pISSN - 1344-3941
DOI - 10.1111/asj.13249
Subject(s) - antioxidant , glutathione peroxidase , leucine , sod2 , glutathione , glutathione reductase , biochemistry , chemistry , biology , superoxide dismutase , medicine , endocrinology , andrology , enzyme , amino acid
The study was conducted to investigate the effects of dietary leucine on antioxidant activity and expression of antioxidant‐ and mitochondrial‐related genes in longissimus dorsi muscle and liver of piglets. Three diets were formulated with different levels of supplemented leucine (0%, 0.25%, 0.5%). Results showed that supplementation of 0.25% leucine significantly increased antisuperoxide anion (ASA) and antihydroxyl radical (AHR) levels and activities of total superoxide dismutade (T‐SOD), glutathione peroxidase (GPx), glutathione S‐transferase (GST), and total antioxidant capacity (T‐AOC) in serum, longissimus dorsi muscle and liver of piglets as compared with the control group. The SOD2, catalase (CAT), GPx, GST, glutathione reductase (GR), and nuclear factor erythroid 2‐related factor 2 (Nrf2) mRNA levels in longissimus dorsi muscle and liver were significantly increased by 0.25% leucine supplementation. However, the malondialdehyde (MDA) content and the mRNA level of Kelch‐like ECH‐associated protein 1 (Keap1) exhibited an opposite tendency. Additionally, supplementation of 0.25% leucine significantly increased the mRNA levels of mitochondrial‐related genes in longissimus dorsi muscle and liver of piglets. Results suggested that supplementation of 0.25% leucine improved antioxidant activity and mitochondrial biogenesis and function of piglets, which was related to the increase in antioxidant enzymes activities and upregulation of expression of antioxidant‐ and mitochondrial‐related genes.