Premium
Survival and growth of geoduck clam larvae ( Panopea generosa ) in flow‐through culture tanks under laboratory conditions
Author(s) -
NavaGómez Gabriel Enrique,
GarciaEsquivel Zaúl,
CarpizoItuarte Eugenio,
OlivaresBañuelos Tatia
Publication year - 2018
Publication title -
aquaculture research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.646
H-Index - 89
eISSN - 1365-2109
pISSN - 1355-557X
DOI - 10.1111/are.13460
Subject(s) - biology , zoology , larva , stocking , aquaculture , fishery , dilution , ecology , fish <actinopterygii> , physics , thermodynamics
The geoduck clam, Panopea generosa , is a species from the west coast of Baja California, Mexico, and the optimization of seed production systems is still a limiting factor for its aquaculture. In this study, a flow‐through culture system was designed and tested in P. generosa larvae. Survival and growth was compared in triplicate 45‐L fiberglass tanks using three larval densities (5, 10 and 15 larvae/ml). A head tank kept constant the water inflow, with a daily renewal rate of 1.8× tank volume. The food ( Isochrysis spp.) was dosed according to the ingestion rate of larvae and the dilution rate. Survival decreased linearly during the first 10 days and reached asymptotic values of ca. 20% (15 larvae/ml) and 50% (densities of 5 and 10 larvae/ml) afterwards. Mean shell length at the end of the experiment (243 ± 1.8 to 270 ± 0.7 μm) was not statistically different among treatments, even though a trend towards higher gross growth rate was observed in the treatment with the lowest density (9.5 μm/day) relative to the rest of the treatments (8.5 μm/day). It is concluded that P. generosa larvae can be successfully grown in flow‐through systems at maximum densities of 10 larvae/ml without significantly affecting their survival and growth rates. The system design was reliable, kept a constant water flow with reduced maintenance, and may represent an important option in the laboratory for increasing the stocking density of Panopea species during the larval phase.