z-logo
Premium
Investigation of air bubble properties: Relevance to prevention of coronary air embolism during cardiac surgery
Author(s) -
Kihara Kazuki,
Orihashi Kazumasa
Publication year - 2021
Publication title -
artificial organs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.684
H-Index - 76
eISSN - 1525-1594
pISSN - 0160-564X
DOI - 10.1111/aor.13975
Subject(s) - air embolism , bubble , buoyancy , carbon dioxide , absorption (acoustics) , embolization , embolism , materials science , medicine , cardiology , chemistry , surgery , mechanics , composite material , physics , organic chemistry , complication
Although de‐airing procedures are commonly performed during cardiac surgery, use of these procedures is not necessarily based on evidence. Uncertainly remains around the size of bubbles that can be detected by echocardiography, whether embolized air or carbon dioxide can be absorbed, and the reasons for embolic events occurring despite extensive de‐airing. Since air bubbles are invisible in the blood, we used simple experimental models employing water and 10% dextran solution to determine the correlation between actual bubble size and the depicted size on echocardiography, bubble size, and floatation velocity and the absorption of carbon dioxide under embolization and irrigation conditions. Bubbles depicted as larger than 1 mm were overestimated by echocardiography: the actual size was larger than 0.4 mm in diameter. While bubbles of 0.5 mm had a floatation velocity of 2 to 3 cm/s, the buoyancy of bubbles smaller than 0.3 mm was negligible. Thus, bubbles that are depicted as larger than 1 mm on echocardiography or that present with apparent buoyancy should be visible and need to be meticulously removed. However, echocardiography cannot distinguish bubbles of around 0.1 mm in diameter from those of capillary size (<10 μm). Thus, we advise continuous venting of dense bubbles until they become sparse. While carbon dioxide was rapidly absorbed when circulating, the absorption of embolized carbon dioxide was negligible. These results suggest that detected intracardiac air represents residual “air,” with carbon dioxide already absorbed. Therefore, the use of conventional de‐airing procedures needs reconsideration: air and buoyant bubbles should be removed from the heart before they are expelled into the aorta; this requires timely and precise assessment with transesophageal echocardiography and effective collaboration between surgeons, anesthesiologists, and perfusionists.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here