z-logo
Premium
The impact of circulation in a heart–lung machine on function and survival characteristics of red blood cells
Author(s) -
Freitas Leal Joames,
Vermeer Harry,
Lazari Dan,
van Garsse Leen,
Brock Roland,
AdjoboHermans Merel,
Bosman Giel
Publication year - 2020
Publication title -
artificial organs
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.684
H-Index - 76
eISSN - 1525-1594
pISSN - 0160-564X
DOI - 10.1111/aor.13682
Subject(s) - extracorporeal circulation , red blood cell , medicine , red cell , blood cell , blood volume , cardiology , physiology
Abstract Extracorporeal circulation is accompanied by changes in red blood cell morphology and structural integrity that affect cell function and survival, and thereby may contribute to the various side effects of heart–lung machine‐assisted surgery. Our main objectives were to determine the effect of circulation of red blood cells in a stand‐alone extracorporeal circuit on several parameters that are known to be affected by, as well as contribute to red blood cell aging. As a source of RBCs, we employed blood bank storage units of different ages. In order to assess the relevance of our in vitro observations for the characterization of extracorporal circulation technology, we compared these changes in those of patients undergoing extracorporeal circulation‐assisted cardiac surgery. Our results show that circulation in a heart–lung machine is accompanied by changes in red blood cell volume, an increase in osmotic fragility, changes in deformability and aggregation behavior, and alterations in the exposure of phosphatidylserine and in microvesicle generation. RBCs from 1‐week‐old concentrates showed the highest similarities with the in vivo situation. These changes in key characteristics of the red blood cell aging process likely increase the susceptibility of red blood cells to the various mechanical, osmotic, and immunological stress conditions encountered during and after surgery in the patient’s circulation, and thereby contribute to the side effects of surgery. Thus, aging‐related parameters in red blood cell structure and function provide a foundation for the validation and improvement of extracorporeal circulation technology.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here