Premium
Infill asymptotics for adaptive kernel estimators of spatial intensity
Author(s) -
van Lieshout M.N.M.
Publication year - 2021
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/anzs.12319
Subject(s) - mathematics , estimator , simple (philosophy) , point process , kernel (algebra) , euclidean space , intensity (physics) , statistics , mathematical optimization , mathematical analysis , combinatorics , philosophy , physics , epistemology , quantum mechanics
Summary We apply the Abramson principle to define adaptive kernel estimators for the intensity function of a spatial point process. We derive asymptotic expansions for the bias and variance under the regime that n independent copies of a simple point process in Euclidean space are superposed. The method is illustrated by means of a simple example and applied to tornado data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom