z-logo
Premium
Generalised regression estimation via the bootstrap
Author(s) -
Booth James G.,
Welsh Alan H.
Publication year - 2020
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/anzs.12282
Subject(s) - mathematics , quantile , asymptotic distribution , statistics , population , parametric statistics , quantile regression , covariance , estimator , demography , sociology
Summary A generalised regression estimation procedure is proposed that can lead to much improved estimation of population characteristics, such as quantiles, variances and coefficients of variation. The method involves conditioning on the discrepancy between an estimate of an auxiliary parameter and its known population value. The key distributional assumption is joint asymptotic normality of the estimates of the target and auxiliary parameters. This assumption implies that the relationship between the estimated target and the estimated auxiliary parameters is approximately linear with coefficients determined by their asymptotic covariance matrix. The main contribution of this paper is the use of the bootstrap to estimate these coefficients, which avoids the need for parametric distributional assumptions. First‐order correct conditional confidence intervals based on asymptotic normality can be improved upon using quantiles of a conditional double bootstrap approximation to the distribution of the studentised target parameter estimate.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here