Premium
Assessing the fit of finite mixture distributions
Author(s) -
Suesse Thomas,
Rayner John C.W.,
Thas Olivier
Publication year - 2017
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/anzs.12213
Subject(s) - goodness of fit , mathematics , statistics , mixture model , class (philosophy) , test (biology) , distribution (mathematics) , probability distribution , statistical hypothesis testing , computer science , artificial intelligence , mathematical analysis , paleontology , biology
Summary Mixture distributions have become a very flexible and common class of distributions, used in many different applications, but hardly any literature can be found on tests for assessing their goodness of fit. We propose two types of smooth tests of goodness of fit for mixture distributions. The first test is a genuine smooth test, and the second test makes explicit use of the mixture structure. In a simulation study the tests are compared to some traditional goodness of fit tests that, however, are not customised for mixture distributions. The first smooth test has overall good power and generally outperforms the other tests. The second smooth test is particularly suitable for assessing the fit of each component distribution separately. The tests are applicable to both continuous and discrete distributions and they are illustrated on three medical data sets.