Premium
On the Correlation Structure of Gaussian Copula Models for Geostatistical Count Data
Author(s) -
Han Zifei,
De Oliveira Victor
Publication year - 2016
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/anzs.12140
Subject(s) - overdispersion , count data , mathematics , poisson distribution , copula (linguistics) , statistics , gaussian , marginal distribution , negative binomial distribution , gaussian random field , quasi likelihood , zero inflated model , econometrics , statistical physics , poisson regression , random variable , gaussian process , population , physics , quantum mechanics , demography , sociology
Summary We describe a class of random field models for geostatistical count data based on Gaussian copulas. Unlike hierarchical Poisson models often used to describe this type of data, Gaussian copula models allow a more direct modelling of the marginal distributions and association structure of the count data. We study in detail the correlation structure of these random fields when the family of marginal distributions is either negative binomial or zero‐inflated Poisson; these represent two types of overdispersion often encountered in geostatistical count data. We also contrast the correlation structure of one of these Gaussian copula models with that of a hierarchical Poisson model having the same family of marginal distributions, and show that the former is more flexible than the latter in terms of range of feasible correlation, sensitivity to the mean function and modelling of isotropy. An exploratory analysis of a dataset of Japanese beetle larvae counts illustrate some of the findings. All of these investigations show that Gaussian copula models are useful alternatives to hierarchical Poisson models, specially for geostatistical count data that display substantial correlation and small overdispersion.