Premium
Smooth Semi‐nonparametric Analysis for Mixture Cure Models and Its Application to Breast Cancer
Author(s) -
Li Haifen,
Zhang Jiajia,
Tang Yincai
Publication year - 2014
Publication title -
australian and new zealand journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.434
H-Index - 41
eISSN - 1467-842X
pISSN - 1369-1473
DOI - 10.1111/anzs.12080
Subject(s) - breast cancer , mathematics , cure rate , nonparametric statistics , statistics , mixture model , maximum likelihood , variance (accounting) , estimation theory , econometrics , cancer , medicine , surgery , accounting , business
Summary Mixture cure models are widely used when a proportion of patients are cured. The proportional hazards mixture cure model and the accelerated failure time mixture cure model are the most popular models in practice. Usually the expectation–maximisation (EM) algorithm is applied to both models for parameter estimation. Bootstrap methods are used for variance estimation. In this paper we propose a smooth semi‐nonparametric (SNP) approach in which maximum likelihood is applied directly to mixture cure models for parameter estimation. The variance can be estimated by the inverse of the second derivative of the SNP likelihood. A comprehensive simulation study indicates good performance of the proposed method. We investigate stage effects in breast cancer by applying the proposed method to breast cancer data from the South Carolina Cancer Registry.