z-logo
Premium
Peripheral airways type 2 inflammation, neutrophilia and microbial dysbiosis in severe asthma
Author(s) -
Azim Adnan,
Green Ben,
Lau Laurie,
Rupani Hitasha,
Jayasekera Nivenka,
Bruce Kenneth,
Howarth Peter
Publication year - 2021
Publication title -
allergy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.363
H-Index - 173
eISSN - 1398-9995
pISSN - 0105-4538
DOI - 10.1111/all.14732
Subject(s) - neutrophilia , bronchoalveolar lavage , medicine , immunology , asthma , dysbiosis , lung , gut flora
Abstract Background IL‐13 is considered an archetypal T2 cytokine central to the clinical disease expression of asthma. The IL‐13 response genes, which are upregulated in central airway bronchial epithelial of asthma patients, can be normalized by high‐dose inhaled steroid therapy in severe asthma. However, this is not the case within the peripheral airways. We have sought to further understand IL‐13 in the peripheral airways in severe asthma through bronchoalveolar analysis. Methods Bronchoalveolar lavage samples were collected from 203 asthmatic and healthy volunteers, including 78 with severe asthma. Inflammatory mediators were measured using a multiple cytokine immunoassay platform. This analysis was replicated in a further 59 volunteers, in whom 16S rRNA analysis of BAL samples was undertaken by terminal restriction fragment length polymorphism. Results Severe asthma patients with high BAL IL‐13, despite treatment with high‐dose inhaled corticosteroids, had more severe lung function and significantly higher BAL neutrophil percentages, but not BAL eosinophils than those with normal BAL‐13 concentrations. This finding was replicated in the second cohort, which further associated BAL IL‐13 and neutrophilia with a greater abundance of potentially pathogenic bacteria in the peripheral airways. Conclusion Our findings demonstrate a steroid unresponsive source of IL‐13 that is associated with BAL neutrophilia and bacterial dysbiosis in severe asthma. Our findings highlight the biological complexity of severe asthma and the importance of a greater understanding of the innate and adaptive immune responses in the peripheral airways in this disease.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here