Premium
Innervation of an engineered muscle graft for reconstruction of muscle defects
Author(s) -
Kaufman Tal,
Kaplan Ben,
Perry Luba,
Shandalov Yulia,
Landau Shira,
Srugo Itay,
AdEl Dean,
Levenberg Shulamit
Publication year - 2019
Publication title -
american journal of transplantation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.89
H-Index - 188
eISSN - 1600-6143
pISSN - 1600-6135
DOI - 10.1111/ajt.14957
Subject(s) - medicine , anatomy , femoral nerve , transplantation , process (computing) , muscle tissue , tissue engineering , electromyography , myocyte , surgery , biomedical engineering , operating system , psychiatry , computer science
Autologous muscle flaps are commonly used to reconstruct defects that involve muscle impairment. To maintain viability and functionality of these flaps, they must be properly vascularized and innervated. Tissue‐engineered muscles could potentially replace autologous muscle tissue, but still require establishment of sufficient innervation to ensure functionality. In this study, we explored the possibility of innervating engineered muscle grafts transplanted to an abdominal wall defect in mice, by transferring the native femoral nerve to the graft. Six weeks posttransplantation, nerve conduction studies and electromyography demonstrated increased innervation in engineered grafts neurotized with the femoral nerve, as compared to non‐neurotized grafts. Histologic assessments revealed axonal penetration and formation of neuromuscular junctions within the grafts. The innervation process described here may advance the fabrication of a fully functional engineered muscle graft that will be of utility in clinical settings.