Premium
Biophysical analysis of afromontane forest community types at Mount Kasigau, Kenya
Author(s) -
Henkin Michael A.,
Medley Kimberly E.,
Maingi John K.
Publication year - 2015
Publication title -
african journal of ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.499
H-Index - 54
eISSN - 1365-2028
pISSN - 0141-6707
DOI - 10.1111/aje.12229
Subject(s) - geography , evergreen , woodland , cloud forest , forestry , altitude (triangle) , physical geography , ecology , environmental science , montane ecology , geometry , mathematics , biology
This study examines how biophysical site conditions differ in relation to the distribution of forest community types at Mount Kasigau, Kenya, in the Eastern Arc. Topographic measures of elevation, slope, curvature and aspect were derived from a 30‐m DEM and temperature and moisture conditions collected from 19 field data loggers for June 2011–2012 measured seasonal change along the steep elevational gradient (1000 m) from bushland to evergreen forest. Nonparametric statistical analyses then compared topographic and climatic conditions among eight ecologically classified forest types. Steep lapse rates in temperature and available moisture support abrupt changes in canopy physiognomy, but dew points declined with elevation. The Kruskal–Wallis test showed significant differences in the elevation, slope, temperature, dew point and relative humidity conditions among the eight forest types. These biophysical conditions are more discrete for Acacia‐Commiphora bushland and cloud forest but not significantly different between riverine forest, lower montane woodlands I and II and Euphorbia quinquecostata woodland, and between semi‐evergreen woodland and evergreen forest. Biophysical conditions and their influence on the distribution of forest types across a heterogeneous mountain landscape are important to understand and monitor in this unpredictably changing tropical seasonal climate.