Premium
Pathway‐Guided Identification of Gene‐Gene Interactions
Author(s) -
Wang Xin,
Zhang Daowen,
Tzeng JungYing
Publication year - 2014
Publication title -
annals of human genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.537
H-Index - 77
eISSN - 1469-1809
pISSN - 0003-4800
DOI - 10.1111/ahg.12080
Subject(s) - epistasis , trait , computational biology , biology , gene , identification (biology) , gene interaction , quantitative trait locus , genetics , computer science , ecology , programming language
Summary Assessing gene‐gene interactions (GxG) at the gene level can permit examination of epistasis at biologically functional units with amplified interaction signals from marker‐marker pairs. While current gene‐based GxG methods tend to be designed for two or a few genes, for complex traits, it is often common to have a list of many candidate genes to explore GxG. We propose a regression model with pathway‐guided regularization for detecting interactions among genes. Specifically, we use the principal components to summarize the SNP‐SNP interactions between a gene pair, and use an L1 penalty that incorporates adaptive weights based on biological guidance and trait supervision to identify important main and interaction effects. Our approach aims to combine biological guidance and data adaptiveness, and yields credible findings that may be likely to shed insights in order to formulate biological hypotheses for further molecular studies. The proposed approach can be used to explore the GxG with a list of many candidate genes and is applicable even when sample size is smaller than the number of predictors studied. We evaluate the utility of the proposed method using simulation and real data analysis. The results suggest improved performance over methods not utilizing pathway and trait guidance.