z-logo
Premium
Analysis of recently duplicated TYRP1 genes and their effect on the formation of black patches in Oujiang‐color common carp ( Cyprinus carpio var. color )
Author(s) -
Chen H.,
Wang J.,
Du J.,
Mandal B. K.,
Si Zh.,
Xu X.,
Yang H.,
Wang Ch.
Publication year - 2021
Publication title -
animal genetics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.756
H-Index - 81
eISSN - 1365-2052
pISSN - 0268-9146
DOI - 10.1111/age.13071
Subject(s) - common carp , biology , carp , zebrafish , cyprinus , gene , genetics , gene duplication , white (mutation) , phylogenetic tree , phenotype , fishery , fish <actinopterygii>
Summary Tyrp1 gene, as a member of the tyrosinase family, has undergone a recent duplication event during fourth‐round whole genome duplication in common carp. In this research, three Tyrp1 genes were identified in Oujiang‐color common carp ( Cyprinus carpio var. color ). The similar expression patterns and close phylogenetic relationship indicated that Tyrp1c is homologous to Tyrp1b and possibly originated from the ancient Tyrp1b . The rates of synonymous and non‐synonymous substitution ( K a / K s ) in Tyrp1 across teleost phylogeny indicated that Tyrp1a is more likely to be in the process of purifying selection. The CRISPR/Cas9 system was used to disrupt the Tyrp1 genes in zebrafish and the WB (black patches on white skin) strain of Oujiang‐color common carp. The Tyrp1 loss of function variants in zebrafish and WB carp showed severe melanin deficiency in the skin. Meanwhile, inactivation of a single Tyrp1 gene did not obstruct melanin synthesis, which proved that the functional redundancy of Tyrp1 genes existed in both zebrafish and Oujiang‐color common carp. Among the mosaic individuals with Tyrp1 genes in disrupted‐color common carp, various mutations in Tyrp1b gene induced gray or brown phenotypes, suggesting that it may be bifunctional in Oujiang‐color common carp. In addition, the phenotype of WB variants was different from that of WW (whole white skin), suggesting that Tyrp1 genes were not the key factor that caused the difference between WB and WW.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here