z-logo
Premium
Evidence for species‐specific plant responses to soil microbial communities from remnant and degraded land provides promise for restoration
Author(s) -
Smith Monique E.,
Delean Steven,
Cavagnaro Timothy R.,
Facelli José M.
Publication year - 2018
Publication title -
austral ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.688
H-Index - 87
eISSN - 1442-9993
pISSN - 1442-9985
DOI - 10.1111/aec.12567
Subject(s) - biology , microbial inoculant , orchard , revegetation , grassland , biomass (ecology) , agronomy , native plant , old field , lolium rigidum , invasive species , introduced species , ecology , inoculation , weed , horticulture , ecological succession , herbicide resistance
Below‐ground interactions between soil microbial communities and plants play important roles in shaping plant community structure, but are currently poorly understood. Understanding these processes has important practical implications, including for restoration. In this study, we investigated whether soil microbes from remnant areas can aid the restoration of old‐fields, and whether soil microbes from an old‐field encourages further invasive establishment. In a glasshouse experiment, we measured growth and survival of two native grasses ( Austrostipa nodosa and Rytidosperma auriculatum ) and an invasive grass ( Lolium rigidum ) grown in sterile soil inoculated with whole soil from three locations: an old‐field, a remnant grassland, and a seed orchard planted with native grasses 7 years ago. Plants grown in sterile, non‐inoculated soil acted as controls. The orchard inoculant was included to test whether soil microbes from an area cultivated with native grasses induced plant responses similar to remnant areas. The remnant treatment resulted in the highest biomass and no mortality for R. auriculatum . All inoculant types increased the biomass of the invasive species equally. The native grass, A. nodosa, was the most sensitive to the addition of inoculum, whereas the invasive L. rigidum suffered very low mortality across all treatments. Overall, mortality was highest in the old‐field treatment at 42.9%. These results give insights into how soil microbes can affect community structure and dynamics, e.g. the high mortality of natives with old‐field inoculant may be one mechanism that allows invasive species to dominate. Poorer performance of native species with the orchard inoculant suggests it would not make a suitable replacement for remnant soil; therefore, more work is needed to understand the requirements of target species and their interactions before this technique can be exploited to maximum benefit.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here