Premium
Scale‐specific processes shape plant community patterns in subtropical coastal grasslands
Author(s) -
Silva Menezes Luciana,
Müller Sandra Cristina,
Overbeck Gerhard Ernst
Publication year - 2016
Publication title -
austral ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.688
H-Index - 87
eISSN - 1442-9993
pISSN - 1442-9985
DOI - 10.1111/aec.12299
Subject(s) - edaphic , biological dispersal , grassland , spatial ecology , ecology , plant community , vegetation (pathology) , spatial variability , subtropics , seed dispersal , geographical distance , geography , biology , species richness , population , medicine , pathology , sociology , soil water , statistics , demography , mathematics
Processes responsible for shaping community patterns act at specific spatial scales. In this study, we aimed at disentangling the effects of climate, soil and space as drivers of variation in a coastal grassland plant community. We were specifically interested in evaluating the relative influence of those processes at broad and fine spatial scales as well as when considering species groups with good and poor long‐distance dispersal capacity. We sampled grassland vegetation at 16 sites distributed along a latitudinal gradient of more than 500 km in subtropical southern B razil and used variation partitioning procedures to ascertain the relative influence of climatic, edaphic and spatial processes on variation in species composition at different spatial scales, considering the entire community and subsets with only species from the Asteraceae family (good long‐distance dispersal) and Poaceae (poor long‐distance dispersal). Climatic filters were the most responsible for shaping grassland community composition at the broad scale, while edaphic filters showed higher importance at the fine scale. When not considering the influence of spatial scale, we observed higher influence of climate structured in space. Composition patterns of species with poor long‐distance dispersal (Poaceae) were more closely related to spatial variables than those of species with effective dispersal (Asteraceae). Our results stressed the importance of addressing different spatial scales to rightly ascertain the magnitude that different drivers exert on plant community assembly. Dividing the community into groups with different dispersal abilities proved useful for a more detailed understanding of the community assembly processes.