z-logo
Premium
Dry season watering alters the significance of climate factors influencing phenology and growth of saplings of savanna woody species in central Z ambia, southern A frica
Author(s) -
Chidumayo Emmanuel
Publication year - 2015
Publication title -
austral ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.688
H-Index - 87
eISSN - 1442-9993
pISSN - 1442-9985
DOI - 10.1111/aec.12254
Subject(s) - dry season , wet season , growing season , subsoil , phenology , precipitation , biology , irrigation , agronomy , ecology , environmental science , geography , soil water , meteorology
Although tree growth in southern A frican savannas is correlated with rainfall in the wet season, some studies have shown that tree growth is controlled more by rainfall in the dry season. If more rainfall occurred in the dry season in future climates, it would affect the growth of savanna trees, especially saplings that have shallower roots which limit access to subsoil water during the dry season when leaf flush and shoot extension occur. Recent paleobotanical evidence has revealed that there was relatively more precipitation in the dry season in eastern A frica in the Eocene than under the current climate. Saplings therefore can be expected to respond more to water addition during the dry season than mature trees that have more stored water and deeper roots that access subsoil water. Accordingly, I hypothesized that irrigation in the dry season should (i) advance the onset of the growing season, (ii) increase growth rates and (iii) alter the growth responses of saplings to climate factors. To test these hypotheses saplings of five savanna woody species were irrigated during the hot‐dry season at a site in central Z ambia and their monthly and annual growth rates compared to those of conspecifics growing under control conditions. Although the responses among the species were variable, all irrigated saplings had significantly higher monthly and annual growth rates than control plants. In addition, dry season watering significantly altered the climatic determinants of sapling growth by either strengthening the role of the same climatic factors that were important under control conditions or displacing them altogether. In conclusion, more precipitation during the hot‐dry season is likely to have significant positive effects on sapling growth and consequently reduce the sapling‐tree transition periods and promote future tree population recruitment in some southern African savanna tree species.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here