Premium
Seasonal habitat selection and space use by a semi‐free range herbivore in a heterogeneous savanna landscape
Author(s) -
Zengeya Fadzai M.,
Murwira Amon,
De GarineWichatitsky Michel
Publication year - 2014
Publication title -
austral ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.688
H-Index - 87
eISSN - 1442-9993
pISSN - 1442-9985
DOI - 10.1111/aec.12137
Subject(s) - habitat , ecology , home range , rangeland , range (aeronautics) , dry season , herbivore , selection (genetic algorithm) , abundance (ecology) , spatial heterogeneity , environmental science , biology , geography , materials science , artificial intelligence , computer science , composite material
Understanding factors that influence habitat selection in heterogeneous landscapes is fundamental for establishing realistic models on animal distribution to inform rangeland management. In this study, we tested whether seasonal variation in habitat selection within the home range of a large herbivore was influenced by constraints such as, distances from water and central place using semi‐free range cattle ( B os taurus ) as a case study. We also tested whether shifts in space use over time were dependent on spatial scale and on the overall abundance of resources. We predicted that distance from water significantly influenced dry season habitat selection while the influence of the central place on habitat selection was season‐independent. We also predicted that shifts in space use over time were spatial scale‐dependent, and that large herbivores would include more diverse habitats in their home ranges during the dry season, when water and food resources are less abundant. Multinomial logit models were used to construct habitat selection models with distances from water and central place as habitat‐specific constraints. Results showed significant variations in habitat selection between the dry and wet season. As predicted, the effect of distance from central place was season‐independent, while the effect of water was not included in the top dry season models contrary to expectation. A diverse range of habitats were also selected during the dry season including agricultural fields. Results also indicated that shifts in space use were spatial scale dependent, with core areas being more sensitive to changes than the home range. In addition, shifts in space use responded to temporal changes in habitat composition. Overall, our results suggest that semi‐free range herbivores adopt different foraging strategies in response to spatial‐temporal changes in habitat availability.