Premium
Role of weather and fuel in stopping fire spread in tropical savannas
Author(s) -
Price Owen F.,
Borah Rittick,
Maier Stefan W.
Publication year - 2014
Publication title -
austral ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.688
H-Index - 87
eISSN - 1442-9993
pISSN - 1442-9985
DOI - 10.1111/aec.12021
Subject(s) - environmental science , vegetation (pathology) , fire regime , moderate resolution imaging spectroradiometer , physical geography , dry season , geography , climatology , ecosystem , satellite , ecology , geology , cartography , medicine , pathology , engineering , biology , aerospace engineering
Abstract Analysis of wildfire extinguishment can help to identify the relative contribution of weather and management to the prevention of fire spread. Here we examine the role of weather, previous fire scars and other fuel interruptions at stopping the spread of nine large (mean 90 000 ha) late dry season fires in A rnhem L and, in the tropical savannas of northern A ustralia. Daily spread was mapped using M oderate‐resolution I maging S pectroradiometer ( MODIS ) satellite imagery with a resolution of 250 m. We sampled points along the boundary of the fires and 1 km inside the boundary and compared conditions between the two sets. Using a combination of binomial regression and regression tree analysis, we found that recent burn scars (from the same year) were very effective at stopping fires. Where there was any recent burning within 500 m of a point, there was a 92% likelihood that it was a boundary. Interruptions such as roads, rivers and topography had small but significant effects. Vegetation type and vegetation greenness also had minor effects. Weather had a small effect via wind speed. This minor role of weather was reinforced by the fact that on most days the fires were both spreading and stopping at different parts of their perimeter. In these savannas, the weather in the late dry season is relatively invariant and is probably always conducive to some degree of fire spread. Here, interruptions to the fuel are critical to stopping fires. Nevertheless, for approximately half of boundary cases, the cause of stopping was not clear. This is probably due to the coarse scale of the analysis that does not reflect fine patterns of fuel arrangements.