z-logo
Premium
Chronic nicotine impairs sparse motor learning via striatal fast‐spiking parvalbumin interneurons
Author(s) -
Kim Baeksun,
Im HehIn
Publication year - 2021
Publication title -
addiction biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.445
H-Index - 78
eISSN - 1369-1600
pISSN - 1355-6215
DOI - 10.1111/adb.12956
Subject(s) - nicotine , neuroscience , parvalbumin , motor learning , excitatory postsynaptic potential , psychology , nicotine withdrawal , neural substrate , striatum , dopamine , inhibitory postsynaptic potential , cognition
Nicotine can diversely affect neural activity and motor learning in animals. However, the impact of chronic nicotine on striatal activity in vivo and motor learning at long‐term sparse timescale remains unknown. Here, we demonstrate that chronic nicotine persistently suppresses the activity of striatal fast‐spiking parvalbumin interneurons, which mediate nicotine‐induced deficit in sparse motor learning. Six weeks of longitudinal in vivo single‐unit recording revealed that mice show reduced activity of fast‐spiking interneurons in the dorsal striatum during chronic nicotine exposure and withdrawal. The reduced firing of fast‐spiking interneurons was accompanied by spike broadening, diminished striatal delta oscillation power, and reduced sample entropy in local field potential. In addition, chronic nicotine withdrawal impaired motor learning with a weekly sparse training regimen but did not affect general locomotion and anxiety‐like behavior. Lastly, the excitatory DREADD hM3Dq‐mediated activation of striatal fast‐spiking parvalbumin interneurons reversed the chronic nicotine withdrawal‐induced deficit in sparse motor learning. Taken together, we identified that chronic nicotine withdrawal impairs sparse motor learning via disruption of activity in striatal fast‐spiking parvalbumin interneurons. These findings suggest that sparse motor learning paradigm can reveal the subtle effect of nicotine withdrawal on motor function and that striatal fast‐spiking parvalbumin interneurons are a neural substrate of nicotine's effect on motor learning.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here