z-logo
Premium
Potent and selective NOP receptor activation reduces cocaine self‐administration in rats by lowering hedonic set point
Author(s) -
Cippitelli Andrea,
Barnes Megan,
Zaveri Nurulain T.,
Toll Lawrence
Publication year - 2020
Publication title -
addiction biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.445
H-Index - 78
eISSN - 1369-1600
pISSN - 1355-6215
DOI - 10.1111/adb.12844
Subject(s) - nop , nociceptin receptor , agonist , self administration , pharmacology , receptor , addiction , opioid , opioid receptor , chemistry , psychology , medicine , opioid peptide , neuroscience
Developing new medications for the treatment of cocaine dependence continues to be a research priority. Compelling evidence indicates that mixed opioid receptor agonists, particularly bifunctional compounds that target nociceptin/orphanin FQ peptide (NOP) and mu opioid receptors, may be useful for the treatment of cocaine addiction. Here, we verify that potent and selective pharmacological activation of NOP receptors is sufficient to reduce relevant facets of cocaine addiction in animal models. Accordingly, we determined whether systemic injections of the small molecule AT‐312 (0, 1, 3 mg/kg) could reduce operant cocaine self‐administration, motivation for cocaine, and vulnerability to cocaine relapse in rats. Results indicate that a potent and selective NOP receptor agonist was equally efficacious in reducing the number of cocaine infusions in short (1‐hour), as well as long (6‐hour) access sessions. When tested on an economic‐demand reinforcement schedule, AT‐312 reduced Q 0 , the parameter that describes the amount of drug consumed at zero price, while leaving the parameter α, a measure of motivation for drug consumption, unaltered. Furthermore, AT‐312 successfully reduced conditioned reinstatement of cocaine seeking. In contrast, the NOP receptor agonist did not modify food self‐administration. Blockade of the NOP receptor with the antagonist SB‐612111 prevented the effect of AT‐312 in decreasing cocaine‐reinforced responding under a 2‐hour fixed ratio 1 schedule, suggesting a NOP receptor‐mediated mechanism. This work demonstrates that potent and selective activation of NOP receptors is sufficient to decrease cocaine taking and seeking behaviors in rats.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here