Premium
Fetal Alcohol Programming of Hypothalamic Proopiomelanocortin System by Epigenetic Mechanisms and Later Life Vulnerability to Stress
Author(s) -
Bekdash Rola,
Zhang Changqing,
Sarkar Dipak
Publication year - 2014
Publication title -
alcoholism: clinical and experimental research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.267
H-Index - 153
eISSN - 1530-0277
pISSN - 0145-6008
DOI - 10.1111/acer.12497
Subject(s) - proopiomelanocortin , epigenetics , dna methylation , biology , endocrinology , medicine , histone , offspring , hypothalamus , neuroscience , gene expression , gene , genetics , pregnancy
Hypothalamic proopiomelanocortin ( POMC ) neurons, one of the major regulators of the hypothalamic‐pituitary‐adrenal (HPA) axis, immune functions, and energy homeostasis, are vulnerable to the adverse effects of fetal alcohol exposure ( FAE ). These effects are manifested in POMC neurons by a decrease in Pomc gene expression, a decrement in the levels of its derived peptide β ‐endorphin and a dysregulation of the stress response in the adult offspring. The HPA axis is a major neuroendocrine system with pivotal physiological functions and mode of regulation. This system has been shown to be perturbed by prenatal alcohol exposure. It has been demonstrated that the perturbation of the HPA axis by FAE is long‐lasting and is linked to molecular, neurophysiological, and behavioral changes in exposed individuals. Recently, we showed that the dysregulation of the POMC system function by FAE is induced by epigenetic mechanisms such as hypermethylation of Pomc gene promoter and an alteration in histone marks in POMC neurons. This developmental programming of the POMC system by FAE altered the transcriptome in POMC neurons and induced a hyperresponse to stress in adulthood. These long‐lasting epigenetic changes influenced subsequent generations via the male germline. We also demonstrated that the epigenetic programming of the POMC system by FAE was reversed in adulthood with the application of the inhibitors of DNA methylation or histone modifications. Thus, prenatal environmental influences, such as alcohol exposure, could epigenetically modulate POMC neuronal circuits and function to shape adult behavioral patterns. Identifying specific epigenetic factors in hypothalamic POMC neurons that are modulated by fetal alcohol and target Pomc gene could be potentially useful for the development of new therapeutic approaches to treat stress‐related diseases in patients with fetal alcohol spectrum disorders.