
Receptor for advanced glycation end products aggravates cognitive deficits in type 2 diabetes through binding of C‐terminal AAs 2‐5 to mitogen‐activated protein kinase kinase 3 (MKK3) and facilitation of MEKK3‐MKK3‐p38 module assembly
Author(s) -
Zhou XiaoYan,
Ying ChangJiang,
Hu Bin,
Zhang YuSheng,
Gan Tian,
Zhu YanDong,
Wang Nan,
Li AnAn,
Song YuanJian
Publication year - 2022
Publication title -
aging cell
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.103
H-Index - 140
eISSN - 1474-9726
pISSN - 1474-9718
DOI - 10.1111/acel.13543
Subject(s) - rage (emotion) , p38 mitogen activated protein kinases , protein kinase a , biology , microbiology and biotechnology , synaptic plasticity , kinase , mitogen activated protein kinase , signal transduction , receptor , neuroscience , biochemistry
In this study, we explored the precise mechanisms underlying the receptor for advanced glycation end products (RAGE)‐mediated neuronal loss and behavioral dysfunction induced by hyperglycemia. We used immunoprecipitation (IP) and GST pull‐down assays to assess the interaction between RAGE and mitogen‐activated protein kinase kinase 3 (MKK3). Then, we investigated the effect of specific mutation of RAGE on plasticity at hippocampal synapses and behavioral deficits in db/db mice through electrophysiological recordings, morphological assays, and behavioral tests. We discovered that RAGE binds MKK3 and that this binding is required for assembly of the MEKK3‐MKK3‐p38 signaling module. Mechanistically, we found that activation of p38 mitogen‐activated protein kinase (MAPK)/NF‐κB signaling depends on mediation of the RAGE‐MKK3 interaction by C‐terminal RAGE (ctRAGE) amino acids (AAs) 2‐5. We found that ctRAGE R2A‐K3A‐R4A‐Q5A mutation suppressed neuronal damage, improved synaptic plasticity, and alleviated behavioral deficits in diabetic mice by disrupting the RAGE‐MKK3 conjugation. High glucose induces direct binding of RAGE and MKK3 via ctRAGE AAs 2‐5, which leads to assembly of the MEKK3‐MKK3‐p38 signaling module and subsequent activation of the p38MAPK/NF‐κB pathway, and ultimately results in diabetic encephalopathy (DE).